
International Journal of Emerging Trend in Engineering and Basic Sciences (IJEEBS)
 ISSN (Online) 2349-6967

 Volume 2 , Issue 1(Jan-Feb 2015), PP158-162

www.ijeebs.com 158 | Page

Proximity Ranking Based Fast Fuzzy Search under Real Time

Environment: A Survey

Shraddha V. Khandade, Prof. Sandeep U. Kadam
Department of Computer engineering, Ambi, Pune, India

I. INTRODUCTION

Users of search services care about both result quality and retrieval time. But balancing efficiency and

effectiveness becomes increasingly difficult, as collection size grows. Although the top ranked results returned

by existing information retrieval models and can satisfy a user’s basic requirements, many weakly relevant or no

relevant documents are also returned. This occurs because many relevance models only consider a bag-of-words

representation of documents, without taking into account the locations within the document at which those

matching words occur. That is, bag-of-word retrieval models do not allow for the intuition that if the query

terms occur near each other in a document, it may indicate that document is more relevant. Fuzzy search also

used in XML data. Traditional methods use query languages such as XPath and XQuery to query XML data.

These methods are powerful but unfriendly to no expert users. First, these query languages are hard to

comprehend for non database users. Second, these languages require the queries to be posed against the

underlying, sometimes complex, database schemas. In a traditional keyword-search system over XML data, a
user composes a query, submits it to the system, and retrieves relevant answers from XML data. This

information-access paradigm requires the user to have certain knowledge about the structure and content of the

underlying data repository. Fortunately, keyword search is proposed as an alternative means for querying XML

data, which is simple and yet familiar to most Internet users as it only requires the input of keywords. In

proposed work we are using fuzzy search system in our information access paradigm.

In this TASX (pronounced “task”),[1] a fuzzy type-ahead search method in XML data, is used. TASX

searches the XML data on the fly as user’s type in query keywords, even in the presence of minor errors of their

keywords.

 Exact Search: It is first considered the case of exact search. One naive way to process such a query on the

server is to answer the query from scratch as follows: first find the trie node corresponding to this keyword by

traversing the trie from the root. Then, we locate the leaf descendants of this node, and retrieve the

corresponding predicted words and the predicted XML elements on the inverted lists.
Fuzzy Search: Users often make some mistakes in their search queries. Meanwhile, small sized keyboards on

mobile devices, lack of caution, or limited knowledge about the data can also cause mistakes. In this case we

cannot find relevant answers by finding records with keywords matching the query exactly. This problem can be

solved by supporting fuzzy search.

Abstract :- In conventional keyword-search system over XML data user composes a keyword query and

submits to the system. When the user has a limited knowledge about the data, he feels confused when issuing

queries. He has to use a trial and error method for finding out the needed information. Then the fuzzy type search

in XML data is examined for avoiding constant problems in search. It is a new information access paradigm in

the system which searches XML data when the user types in different query keywords. It allows users to explore

the data as they type when the minor errors are present in their keywords. This method has four features:
1) this is Auto complete and it supports queries with multiple keywords in XML data. 2) Fuzzy search can find

high quality answers that have keywords matching the query keywords approximately. 3) The index structures

and searching algorithms in this method are achieving a very high interactive speed. The effective index

structures and top-k algorithms are achieving a high interactive speed. The effective ranking functions are

studied progressively to identify the top-k relevant answers. 4) Proximity aware ranking improves precision of

top results significance and quality.

Keywords :- Fuzzy search, Keyword search, Proximity ranking, Top-k answer, XML.

International Journal of Emerging Trend in Engineering and Basic Sciences (IJEEBS)
 ISSN (Online) 2349-6967

 Volume 2 , Issue 1(Jan-Feb 2015), PP158-162

www.ijeebs.com 159 | Page

Finding Relevant Answers within Time Limit: A main computational challenge in this search paradigm is its

high- speed requirement. It is known that to achieve an instant speed for humans (i.e., users do not feel delay),

from the time a user types in a character to the time the results are shown on the device, the total time should be

within 100 milliseconds . The time includes the network delay, the time on the search server, and the time of

running code on the device of the user (such as JavaScript in browsers). Thus the amount of time the server can

spend is even less. At the same time, compared to traditional search systems, instant search can result in more
queries on the server since each keystroke can invoke a query, thus it requires a higher speed of the search

process to meet the requirement of a high query throughput. What makes the computation even more

challenging is that the server also needs to retrieve high-quality answers to a query given a limited amount of

time to meet the information need of the user.

Proximity Ranking: Recent studies show proximity is highly correlated with document relevancy, and

proximity aware ranking improves the precision of top results significantly. However, there are only a few

studies that improve the query efficiency of proximity-aware search by using early-termination techniques. Zhu

et al. [2] exploited document structure to build a multi-tiered index to terminate the search process without

processing all the tiers. The techniques create an additional inverted index for all term pairs, resulting in a large

space. To reduce the index size, Zhu et al. Proposed to build a compact phrase index for a subset of the phrases.

Fig.1. Server architecture of instant fuzzy search.

Subsequent queries of the user typically share many keywords with previous queries due to incremental

typing, it is very important to do the computation incrementally and distribute the computational cost of a query

between its preceding queries. For this reason, we have a Cache module that stores some of the computed results

of early queries that can be used to expedite the computation of later queries. The Phrase Validator uses the

Cache module to validate a phrase without traversing the trie from scratch, while the Index Searcher benefits

from the Cache by being able to retrieve the answers to an earlier query to reduce the computational cost.

II. METHODS FOR KEYWORD SEARCH OVER XML DATA
a. LCA based method:

The lowest common ancestor (LCA) is a concept in graph theory and computer science. Let T be a rooted tree

with n nodes. The lowest common ancestor between two nodes v and w is defined as the lowest node in T that

has both v and w as descendants. The LCA of v and w in T is the shared ancestor of v and w that is located

farthest from the root. There are different ways to answer the query on an xml document; one commonly used

method is LCA based method [3]. Many algorithms that use query over xml uses this method. Content nodes are

the parent node of the keyword. For example consider keyword db in fig.2 then content node of db is node 13

and node16.The server contains index structure of xml document which each node is letter in keyword and leaf
node contain all nodes that contain the keyword this leaf node is called inverted list.

Procedure-

 For keyword query the LCA based method retrieves content nodes in xml that are in inverted lists.

 Identify the LCAs of content nodes in inverted list

International Journal of Emerging Trend in Engineering and Basic Sciences (IJEEBS)
 ISSN (Online) 2349-6967

 Volume 2 , Issue 1(Jan-Feb 2015), PP158-162

www.ijeebs.com 160 | Page

 Takes the sub tree rooted at LCAs as answer to the query

for example suppose the user typed the query “www db” then the content nodes of db are{13,16} and

for www are3 ,the LCAs of these content nodes are nodes ,12,15,2,1.here the nodes 3,13,12,15 are

more relevant answers but nodes 2 and 1 are not relevant answers.

Limitation-

 It gives irrelevant answers

 The results are not of high quality

Fig. 2 An XML document.

Consider the XML document in Fig.2. Assume a user types in a keyword query “db mics.” The predicted word

of “db” is “db.” The predicted words of “mics” are “mices” and “mich.” The subtree rooted at node 12 is the

predicted answer of “db mices.” The subtree rooted at node 15 is the predicted answer of “db mich.”Thus,

TASX can save users time and efforts, since they can find the answers even if they have not finished typing all

the complete keywords or typing keywords with minor errors.

b. ELCA based method:

To address the limitation of LCA based method exclusive LCA (ELCA) [4] is proposed. It states that an

LCA is ELCA if it is still an LCA after excluding its LCA descendents. for example suppose the user typed the

query “db tom” then the content nodes of db are {13, 16} and for tom are{14.17} ,the LCAs of these content
nodes are nodes2,12,15,1.here the ELCAs are 12,15.the subtree rooted with these nodes is displayed which are

relevant answers Node 2 is not an ELCA as it is not an LCA after excluding nodes 12 and 15. Xu and

Papakonstantinou proposed a binary-search-based method to efficiently identify ELCAs.

III. LITERATURE SURVEY

Keyword search is a widely accepted search paradigm for querying document systems and the World Wide

Web.

L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram proposed challenges related to keyword search in
XML data in paper “Xrank: Ranked Keyword Search over Xml Documents.” [5] One important advantage of

keyword search is that it enables users to search information without knowing a complex query language such as

International Journal of Emerging Trend in Engineering and Basic Sciences (IJEEBS)
 ISSN (Online) 2349-6967

 Volume 2 , Issue 1(Jan-Feb 2015), PP158-162

www.ijeebs.com 161 | Page

XPath or XQuery, or having prior knowledge about the structure of the underlying data. Fuzzy type-ahead

search in textual documents.

S. Ji, G. Li, C. Li, and J. Feng, in paper “Efficient Interactive Fuzzy Keyword Search” [6] allows users to

explore data as they type, even in the presence of minor errors of their input keywords. Type-ahead search can

provide users instant feedback as users type in keywords, and it does not require users to type in complete

keywords. Type-ahead search can help users browse the data, save users typing effort, and efficiently find the

information. Type-ahead search in relational databases also studied in. There are studies on building an
additional index for each term pair that appears close to each other in the data, or for phrases However, building

an index for the term pairs will consume a significant amount of space. Studies show that users often include

entities such as people names, companies, and locations in their queries. These entities can contain multiple

keywords, and the user wants these keywords to appear in the answers as they are, i.e., the keywords are

adjacent and in the same order in the answers as in the query. Users sometimes enter keywords enclosed by

quotation marks to express that they want those keywords to be treated as phrases. Based on this observation,

we propose a technique that focuses on the important case where we rank highly those answers containing the

query keywords as they are, in addition to adapting existing solutions to instant-fuzzy search

Jianhua Feng, and Guoliang Li” Efficient Fuzzy Type-Ahead Search in XML Data”.[1] TASX

(pronounced “task”), a fuzzy type-ahead search method in XML data. TASX searches the XML data on the fly
as users’ type in query keywords, even in the presence of minor errors of their keywords. TASX provides a

friendly interface for users to explore XML data, and can significantly save users typing effort. In this paper, we

study research challenges that arise naturally in this computing paradigm. The main challenge is search

efficiency. Each query with multiple keywords needs to be answered efficiently. To make search really

interactive, for each keystroke on the client browser, from the time the user presses the key to the time the

results computed from the server are displayed on the browser, the delay should be as small as possible. An

interactive speed requires this delay should be within milliseconds.

Y. Xu and Y. Papakonstantinou, “Efficient LCA Based Keyword Search in XML Data”[4] proposed an

efficient algorithm called Indexed Stack to find answers to keyword queries based on XRank’s semantics to

LCA. Also focused on three most closely related works: XRank, schema free Xquery and XK- search.
.

IV. PROPOSED WORK

There are many works to do in the future. Firstly, users reported that the returned local results of Title

input box cannot provide useful information for faceted search because there are little publications/movies that

have the same title. We should summarize these local results into groups to improve the faceted search ability.

Secondly, our systems support only AND-semantics for the queries. We will investigate the OR-semantics and

top-k algorithms in the future to make the searching more flexible and efficient. Thirdly, we should also tolerate

misplacing of keywords to leverage the simplicity and usability of forms.

By this comparative study, It is analysed that search-as-you-type can be further enhanced. This can be
achieved by using ranking queries. Reference points, called as vantage points are used to partition the relational

data space into spherical shell-like regions in a hierarchical manner. These vantage points are distance-based

index structures. Usage large number of vantage points may result in a more efficient result during search

operations.

V. CONCLUSION

In this it is studied how to improve ranking of an instant-fuzzy search system by considering proximity

information when we need to compute top-k answers and how to adapt existing solutions to solve this problem,

including computing all answers, doing early termination, and indexing term pairs. A technique is proposed to

index important phrases to avoid the large space overhead of indexing all word grams. An incremental
computation algorithm is presented for finding the indexed phrases in a query efficiently, and studied how to

compute and rank the segmentations consisting of the indexed phrases. The techniques are compared to the

instant fuzzy adaptations of basic approaches. A very thorough analysis is conducted by considering space, time,

and relevancy tradeoffs of these approaches. In particular, the experiments on real data showed the efficiency of

International Journal of Emerging Trend in Engineering and Basic Sciences (IJEEBS)
 ISSN (Online) 2349-6967

 Volume 2 , Issue 1(Jan-Feb 2015), PP158-162

www.ijeebs.com 162 | Page

the proposed technique for keyword queries that are common in search applications. It is concluded that

computing all the answers for the other queries would give the best performance and satisfy the high efficiency

requirement of instant search.

REFERENCES

[1] L. Jianhua Feng, and Guoliang Li,“ Efficient Fuzzy Type-Ahead Search in XML Data”, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 5, MAY 2012
[2] M. Zhu, S. Shi, M. Li, and J.-R. Wen, “Effective top-k computation in retrieving structured documents with term-
proximity support,” in CIKM, 2007, pp. 771–78.
 [3] Y. Xu and Y. Papakonstantinou, “Efficient Keyword Search for Smallest Lcas in XML Databases,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 537-538, 2005.
[4] Y. Xu and Y. Papakonstantinou, “Efficient LCA Based Keyword Search in XML Data,” Proc. Int’l Conf. Extending
Database Technology: Advances in Database Technology (EDBT), pp. 535-546, 2008.

[5] F. Shao, L. Guo, C. Botev, A. Bhaskar, M.M.M. Chettiar, F.Y. 0002, and J. Shanmugasundaram, “Efficient Keyword
Search over Virtual XML Views,” Proc. Int’l Conf. Very Large Data Bases (VLDB), pp. 1057-1068, 2007
[6] S. Ji, G. Li, C. Li, and J. Feng, “Efficient Interactive Fuzzy Keyword Search,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 371-380, 2009

	REFERENCES

